Sains Malaysiana 54(10)(2025): 2539-2551

http://doi.org/10.17576/jsm-2025-5410-16

 

Multiplicative Error Model Based on Robust Estimation: Evidence from
High-Frequency Data in the Chinese Futures Market

(Model Ralat Pendaraban Berdasarkan Keteguhan Anggaran: Bukti daripada
Data Frekuensi Tinggi dalam Pasaran Hadapan China)

 

TING LI* & SAIFUL IZZUAN HUSSAIN

 

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600
UKM Bangi, Selangor, Malaysia

 

Received: 20 December 2024/Accepted: 28 August 2025

 

Abstract

This study presents a robust estimation approach for the Multiplicative Error Model (MEM), developed for analyzing non-negative, high-frequency financial time series data. Although maximum likelihood estimation (MLE) is widely used, it is very sensitive to outliers and shows poor results for small sample sizes. To address this problem, we propose a self-weighted M-estimation method that accounts for infinite variance and weights outliers downwards, thereby improving the stability and robustness of the estimation. Simulation studies with four distributions confirm the superior performance of this method compared to MLE and LAD estimators. An empirical analysis using five-minute price spread data of eight major Chinese commodity futures - gold, petroleum asphalt, soybean, iron ore, soybean oil, corn, sugar, and rapeseed oil - demonstrates the practical advantages of this method. The results show a consistent improvement in model fit, which translates into lower AIC values and confirms the effectiveness of self-weighted M-estimation for noisy, high-frequency financial data.

 

Keywords: Empirical analysis; high-frequency data; Multiplicative Error Model; self-weighted M-estimation

 

Abstrak

Penyelidikan ini memperkenalkan pendekatan penganggaran teguh bagi Model Ralat Pendaraban (MEM) yang dibangunkan untuk menganalisis data siri masa kewangan frekuensi tinggi yang bukan negatif. Walaupun kaedah penganggaran kebolehjadian maksimum (MLE) digunakan secara meluas, namun ia sangat sensitif terhadap nilai terpencil dan menunjukkan prestasi yang lemah apabila saiz sampel kecil. Bagi mengatasi masalah ini, kajian ini mencadangkan kaedah penganggaran berpemberat-kendiri-M yang mengambil kira varian tak terhingga dan memberikan pemberat lebih rendah kepada nilai terpencil, sekali gus meningkatkan kestabilan dan keteguhan anggaran. Kajian simulasi yang melibatkan empat taburan menunjukkan prestasi kaedah ini lebih baik berbanding anggaran MLE dan LAD. Analisis empirik yang menggunakan data harga lima-minit bagi lapan kontrak niaga hadapan komoditi utama China - emas, asfalt petroleum, soya, bijih besi, minyak soya, jagung, gula dan minyak biji rapa - membuktikan kelebihan praktikal kaedah ini. Hasil kajian menunjukkan peningkatan tekal dalam kesesuaian model yang diterjemahkan kepada nilai AIC yang lebih rendah, sekali gus mengesahkan keberkesanan penganggaran berpemberat-kendiri-M bagi data kewangan frekuensi tinggi yang bising.

 

Kata kunci: Anggaran berpemberat-kendiri-M; analisis empirik; data frekuensi tinggi; Model Ralat Pendaraban

 

REFERENCES

Cai, S.X. & Zhang, B. 2021. High quality development of China's futures market: Connotation, characteristics, and implementation path. Southwest Finance (12): 80-91.

Engle, R. 2002. New frontiers for arch models. Journal of Applied Econometrics 17(5): 425-446.

Huber, P.J. 1964. Robust estimation of a location parameter. The Annals of Mathematical Statistics 35: 73-101.

Lu, W., Wang, Y. & Gao, Y. 2020. M-estimates for the multiplicative error model. Journal of Statistical Computation and Simulation 90(1): 1-27.

Ma, D. & Yin, Y. 2012. Noise, jumping, and high frequency price fluctuations: Analysis of fluctuations based on threshold pre-averaging. Financial Research (04): 124-139.

Ma, Y., Guo, P. & Zhao, Y. 2014. The empirical research on volatility measurement model based multiplicative error model. Seventh International Joint Conference on Computational Sciences and Optimization, Beijing, China. pp. 455-458. doi: 10.1109/CSO.2014.156

Resnick, S.I. 1997. Heavy tail modelling and teletraffic data. Annals of Statistics 25(5): 1805-1869.

Taylor, N. & Xu, Y. 2017. The logarithmic vector multiplicative error model: An application to high frequency NYSE stock data. Quantitative Finance 17(7): 1021-1035.

Zhang, H.W. 2019. Research on the development and risk management of China's futures market. Business News 000 (052): 237.

Zhou, B. 1996. High-frequency data and volatility in foreign-exchange rates. Journal of Business & Economic Statistics (14): 45-52.

Zhou, S.B. & Zhang, B. 2016. Least squares relative error estimation for multiplicative error model. Statistics & Decision (20): 9-12.

 

*Corresponding author; email: p129842@siswa.ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next